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ABSTRACT

As Machine Learning (ML) systems become more ubiquitous, ensuring the fair
and equitable application of their underlying algorithms is of paramount impor-
tance. We argue that one way to achieve this is to proactively cultivate public
pressure for ML developers to design and develop fairer algorithms — and that
one way to cultivate public pressure while simultaneously serving the interests
and objectives of algorithm developers is through gameplay. We propose a new
class of games — “games for fairness and interpretability” — as one example
of an incentive-aligned approach for producing fairer and more equitable algo-
rithms. Games for fairness and interpretability are carefully-designed games with
mass appeal that (1) provide insights into how machine learning models work and
(2) produce data that helps researchers and developers improve their algorithms.
We highlight several possible examples of games, their implications for fairness
and interpretability, how their proliferation could creative positive public pressure
by narrowing the gap between algorithm developers and the general public, and
why the ML community could benefit from them.

1 INTRODUCTION

As ML increasingly permeates virtually all aspects of life — and unequally serves, or fails to serve,
certain subsegments of the population (Caliskan et al. (2017); Bolukbasi et al. (2016); Buolamwini
& Gebru (2018)) — there is a need for a deeper exploration of how ML algorithms can be made
fairer and more interpretable. To achieve this, we believe effective public pressure will be one
lever to better models. There are several examples from history of how public pressure has spurred
changes to technology policies. The creation of dynamite; America’s use of the atomic bomb during
the second world war; and the eugenics movement from the early 20th century are all examples
of ethically dubious endeavors that were at least somewhat abated by a critical public response1.
However, recent stories about Facebook and Cambridge Analytica, driverless cars going rogue2,
and even machine-powered labor displacement (Autor (2015)) have hinted at the dangers of simply
letting history unfold. Public pressure is often reactive and arises in the wake of crises. To counter
this, we ask: how can public pressure operate proactively in order to ensure ML can effectively
ground itself in — and respond to — calls for fairness and interpretability?

To that end, some authors have recently sparked public conversation around the ethical pitfalls of
machine learning (O’Neil (2016); Eubanks (2018); Noble (2018)). Furthermore, initiatives like Tur-
ingbox (Epstein et al. (2018)) and OpenML (Vanschoren et al. (2014)) are actively seeking to create
platforms and marketplaces where members of the scientific community and general public can audit
ML algorithms to promote more fairness, transparency, and accountability. These efforts are impor-
tant first steps towards generating proactive public pressure. However, they fail to directly align
incentives between those who design and deploy algorithms and those who are affected by them.
Why should an algorithm developer care about how a niche group of individuals rates the fairness
or interpretability of his or her algorithms? Why should members of the general public spend their
time trying to understand, let alone evaluate, these algorithms? It is unclear how sustainable current
efforts to generate proactive public pressure will be without incentive alignment.

∗Authors contributed equally
1https://www.bostonglobe.com/ideas/2018/03/22/computer-science-faces-ethics-crisis-the-cambridge-

analytica-scandal-proves/IzaXxl2BsYBtwM4nxezgcP/story.html
2https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
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To align incentives between ML developers and the general public in a quest for more interpretable
— and as a result, in due course, fairer — ML, we propose “games for fairness and interpretability”:
networked games that as a byproduct of the game’s objectives, engage the general public in auditing
algorithms while simultaneously generating valuable training sets for ML developers.

2 ML POWERED GAMES

Inspired by Luis von Ahn’s Games with a Purpose (GWAP) framework (Von Ahn (2008); Von Ahn
& Dabbish (2008)), we propose using ML-powered games to enhance model interpretability —
which we view as an important step towards developing fairer ML.

(a) Example of a Humans vs. AI game. Player
1 provides an input, while Player 2 competes
against an AI to produce the correct answer.

(b) Example of a Break the Bot game. Player 1
and Player 2 compete against each other in pro-
ducing adversarial attacks that will reduce the ac-
curacy of the model’s predictions. In this exam-
ple, players can change the lighting and color, or
add and remove common objects.

Figure 1: Both types of games are designed to surface model biases and deficiencies, while also
producing more robust and diverse training data.

2.1 GAMES WITH A PURPOSE

Described as “human computation”, the GWAP framework was designed for problems solvable
by humans but beyond the capabilities of machines. Instead of relying on financial incentives or
altruism, GWAPs simply rely on people’s desire for fun and entertainment. A successful GWAP can
produce not only novel and creative solutions to difficult problems, but also provide large amounts
of labeled data for training machine learning models. Since its inception, GWAPs have attracted
hundreds of thousands of players in order to tackle problems ranging from protein folding (Khatib
et al. (2011)) and RNA folding (Lee et al. (2014)) to examining the human perception of correlation
in scatter plots3.

The GWAP framework includes several different templates of games (Von Ahn & Dabbish (2008)).
Output-agreement games has two players attempt to produce the same output when shown the same
input. In the ESP game, for example, the players are shown an image and asked to guess what words
the other player would use to describe the image. A variation of the game includes taboo words for
each image, thus requiring users to guess more uncommon words, in turn producing more interesting
labeled data (Von Ahn & Dabbish (2004)). In input-agreement games, two players are each provided
an input which may or may not be different; the players are asked to output descriptions of the
inputs and then finally guess whether they were shown the same input. For instance, players in the
Tagatune game are given song clips and asked to output tags, before finally guessing whether they
had the same clip (Law & Von Ahn (2009)).

3http://guessthecorrelation.com/
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2.2 DESIGNING GAMES FOR FAIRNESS AND INTERPRETABILITY

While reputation-based incentives can create social pressure and motivate ML developers, we be-
lieve a well-designed game aligns incentives between ML developers and the consumers of ML (i.e.
the general public). Due to the importance of labeled data for deep neural networks, we believe ML
researchers will have strong incentives to upload their models if the games that leverage them can
produce valuable training data or adversarial examples.

On the consumer side, GWAPs have shown that such games can reach large audiences. Furthermore,
a larger audience is often a broader audience, thus allowing more diverse probing of the model. We
believe that there is an appetite for ML games, due both to increasing media attention on ML and
the growing capabilities of new models. Recent examples of games that engage a general audience
in exploring ML include the Pictionary-like game Quick, Draw!4, word embedding-powered word
association games5, and an endless text-adventure game built using a generative text model6.

We define “games for fairness and interpretability” as ML-powered games in which the output and
/ or interaction with human players is produced by a machine learning model. These games can
also be networked to enable human-human interaction and competition. Games should be fun and
engaging, provide insight into how the underlying machine learning models work, and produce data
that helps models improve — in particular, so that the models are better-equipped to more equitably
serve a diverse range of individuals and scenarios.

One might imagine a platform for such games, where once a game has been designed and open-
sourced, its backend model could be swapped for any model with similar inputs and outputs. The
platform could also serve as a public forum for widespread participation in, and discussion about, the
evaluation of new ML models. This unique forum — one where both ML developers and members
of the public are present — could serve as an important vehicle for a) enhancing broader familiarity
with and awareness of ML and its applications, and perhaps eventually, b) creating proactive public
pressure that motivates algorithm developers to build more interpretable and fairer ML.

2.3 PROPOSED CATEGORIES OF GAMES

In the spirit of GWAPs, we describe possible categories of games in the following sections.

2.3.1 HUMANS VS. AI

Setup. Player 1 provides an input, and Player 2 competes against an AI to guess the correct answer.

Example game 1 — Guess Who? Player 1 describes themselves, their interests, job, and other
attributes through freeform short text. Player 2 and the AI attempt to guess the age, sex, and location
of Player 1.

Example game 2 – Codenames. Inspired by the popular Codenames board game Wikipedia con-
tributors (2020) , the players are presented with a 5x5 grid of words. Player 1 is a “spymaster” who
is also allowed to see the placement of bombs on the grid. The spymaster’s role is to give a one word
clue, plus the number of words that matches the clue. Player 2’s goal is to guess the correct words;
however, if he or she guesses a bomb, the game is over. The game is won if all the non-bomb words
are guessed correctly. The goal is to finish the game in fewer rounds; saying a larger number allows
the team to win more quickly, but it is also more difficult to come up with clues.

In our ML-powered variant, the AI also attempts to guess the words; if the AI’s guesses matches
Player 2’s guesses, those guesses are invalid. Figure 1a shows an example round.

Data produced and insight into interpretability. Player 1 will have to produce inputs that are
recognizable by another human but undetectable or incorrectly classified by the AI. This requires a
player to intuit the space of inputs that a model understands and in which cases it might fail. For
instance, Player 1 may find that cultural references are harder for a ML model. Natural language
processing models that can incorporate common sense reasoning and knowledge also remains an
open area of research. The successful inputs and clues can be used as more robust training data.

4https://quickdraw.withgoogle.com/
5http://robotmindmeld.com/
6https://www.aidungeon.io/
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In addition, baseline models for the AI could be based on word embeddings, which have been shown
to reflect implicit human biases around gender, race, occupation, etc. (Caliskan et al. (2017)). These
biases may be surfaced if the AI incorrectly relies on them to make predictions.

2.3.2 BREAK THE BOT

Setup. Each player is shown an input and the model’s output (e.g. a prediction). Each player is
asked to make a small modification to the input. Whoever can cause the largest change in the model
output, while using the smallest modification, receives more points.

Example game — Vandalize it! The brittleness of deep neural networks has been illustrated in
several computer vision systems. For example, graffiti on signs can significantly lower object recog-
nition accuracy (Eykholt et al. (2018)), while Rosenfeld et al. showed that adding an object to a
scene could drastically change the ability to recognize all other objects (Rosenfeld et al. (2018)).
These deficiencies can have catastrophic effects on real-world systems.

In this self-driving car inspired game, players are shown street images overlaid with bounding boxes
of detected objects. For example, a stop sign may be detected by the model with probability 0.85.
The players’ goal is to change that prediction by making small edits to the sign and its surroundings.
The game will give players tools to alter the angle, lighting, hue of the image, as well as add and
subtract other objects and artificats. (The game will have to measure the ‘size’ of modifications in
order to assign scores). Figure 1b shows an example of how the game might look.

Data produced and insight into interpretability. These games provide adversarial examples and
sensitivity analysis on model inputs. This is important as the field of adversarial examples is becom-
ing increasingly important (Goodfellow et al. (2014)), especially as ML models become deployed
in the real world (Kurakin et al. (2016)), and obtaining those examples can often be difficult (Zhao
et al. (2017)). ML researchers can also gain a greater understanding of how inputs may be modified
in semantically meaningful ways, as well as if the observed model behavior is desirable (e.g. fair).

3 CONCLUSION

As ML-powered technologies continue to proliferate, the threat of biased and opaque decision-
making looms large. We believe public pressure is a powerful mechanism for inspiring changes in
how algorithms are developed. Games for fairness and interpretability provide one means for en-
gaging the public in probes of ML systems while simultaneously producing hard-to-source data that
serves the interests of ML developers. We believe games are unique in their ability to engage dif-
ferent audiences and are thus a promising avenue in which to pursue complicated, multi-stakeholder
challenges like building fairer ML systems.

We note that games can help augment existing trends in ML research. Thus far, approaches to oper-
ationalize fairness include learning fair representations that factorize out sensitive attributes (Zemel
et al. (2013)), allowing the use of the sensitive attributes but aiming for “equality of opportunity”
(Hardt et al. (2016)), and more. At times, these methods have been guided by human definitions,
such as the 80% rule of “disparate impact” outlined by the US Equal Employment Opportunity
Commission as a definition of discrimination (Feldman et al. (2015)). Games can shed light onto
how fair ML models may appear in practice, as well as what notions of fairness that humans care
about, which can in turn be formalized into better models. On the interpretability side, many meth-
ods have centered on introspection and visualization, such as inverting representations to generate
images (Mahendran & Vedaldi (2015); Mordvintsev et al. (2015)) and producing saliency maps
(Ribeiro et al. (2016); Sundararajan et al. (2017)). However, there are questions around the reliabil-
ity and intuitiveness of these explanations (Jain & Wallace (2019); Kindermans et al. (2019)). The
games’ data can be analyzed through these methods, perhaps providing insight into how well current
explanations match human intuitions.

Looking ahead, there are several open questions: who should be responsible for designing and
developing games for fairness and interpretability? How will the games be deployed and marketed
so as to recruit a diverse range of players? What new risks or threats might these games introduce?
These are important questions that will require continuous exploration and reflection. We hope this
paper serves as an initial stepping stone and inspires individuals both within and beyond the ML
community to consider the potential power of games.
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