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ABSTRACT

The human visual system is remarkably robust against a wide range of naturally
occurring variations and corruptions like rain or snow. In contrast, the performance
of modern image recognition models strongly degrades when evaluated on previ-
ously unseen corruptions. Here, we demonstrate that a simple but properly tuned
training with additive Gaussian and Speckle noise generalizes surprisingly well to
unseen corruptions, easily reaching the previous state of the art on the corruption
benchmark ImageNet-C (with ResNet50) and on MNIST-C. We build on top of
these strong baseline results and show that an adversarial training of the recognition
model against uncorrelated worst-case noise distributions leads to an additional
increase in performance. This regularization can be combined with previously
proposed defense methods for further improvement.

1 INTRODUCTION

While Deep Neural Networks (DNNs) have surpassed the functional performance of humans in a
range of complex cognitive tasks (He et al., 2016; Xiong et al., 2016; Silver et al., 2017; Campbell
et al., 2002; OpenAl, 2018), they still lag behind humans in numerous other aspects. One fundamental
shortcoming of machines is their lack of robustness against input perturbations. Even minimal pertur-
bations that are hardly noticeable for humans can derail the predictions of high-performance neural
networks. For the purpose of this paper, we distinguish between two types of input perturbations. One
type are minimal image-dependent perturbations specifically designed to fool a neural network with
the smallest possible change to the input. These so-called adversarial perturbations have been the
subject of hundreds of papers in the past five years, see e.g. (Szegedy et al., 2013; Madry et al., 2018;
Schott et al., 2019; Gilmer et al., 2018). Another, much less studied type are common corruptions,
which occur naturally in many applications. We argue that in many practical applications robustness
to common corruptions is often more relevant than robustness to artificially designed adversarial
perturbations. Besides its practical relevance, robustness to common corruptions is also an excellent
target in its own right for researchers in the field of adversarial robustness and domain adaptation.
Common corruptions can be seen as distributional shifts or as a weak form of adversarial examples
that live in a smaller, constrained subspace.

We demonstrate that data augmentation with Gaussian or Speckle noise serves as a simple yet very
strong baseline that is sufficient to surpass almost all previously proposed defenses against common
corruptions on ImageNet-C for a ResNet50 architecture. Next, we introduce a neural network-based
adversarial noise generator that can learn arbitrary uncorrelated noise distributions that maximally
fool a given recognition network when added to their inputs. Based on this, we design and validate a
constrained Adversarial Noise Training (ANT) scheme through which the recognition network learns
to become robust against adversarial noise. We demonstrate that our ANT reaches state-of-the-art
robustness on the corruption benchmark ImageNet-C for the commonly used ResNet50 architecture.
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Figure 1. Outline of our approach. A: First, we train a generative network against a vanilla trained
classifier to find the adversarial noise. B: To achieve robustness against adversarial noise, we train the
classifier and the noise generator jointly. C: We measure the robustness against common corruptions
for a vanilla, adversarially trained (Adv. Tr.), trained on Stylized ImageNet (SIN), trained via Gaussian
data augmentation (GNT) and trained with the means of Adversarial Noise Training (ANT). With
our methods, we achieve the highest accuracy on common corruptions, both on all and non-Noise
categories.

We discuss work related to ours in Appendix A. We released our trained model weights along with
evaluation code on github.com/bethgelab/game-of-noise.

2 METHODS

Training with Gaussian noise Several researchers have tried using Gaussian noise as a method to
increase robustness towards common corruptions with mixed results (see Appendix A). In contrast
to previous work, we treat the standard deviation o of the distribution as a hyper-parameter of the
training and measure its influence on robustness. To formally introduce the objective, let D be the
data distribution over data samples (x, y).We train a differentiable classifier fy(x) by minimizing the
risk on a dataset with additive Gaussian noise

@,y~D S~N(0,021) [Lce (fo(z +6),y)], (1)

where o is the standard deviation of the Gaussian noise and x -+ § is clipped to the input range [0, 1]*.
To maintain high accuracy on clean data, we only perturb 50% of the training data with Gaussian
noise within each batch.

Learning Adversarial Noise Our goal is to find a noise distribution p,(8), § € R such that
noise samples added to & maximally confuse the classifier fy. More concisely, we optimize

mgxmﬁp ME@ [Lck (fo(clip(z +9)),y)], 2)

where clip is an operator that clips all values to the valid interval (i.e. clip(x + &) € [0,1]") and
18]]2 = €.

We do not have to explicitly model the probability density function pg4(d) since optimizing Eq. (2)
only involves samples drawn from p,(8). This sampling process is implemented by a neural network,
which we call noise generator. Details of its implementation are given in Appendix B.
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Adversarial Noise Training To increase robustness, we now train the classifier fy to minimize the
risk under adversarial noise distributions jointly with the noise generator

mainm(;ix E E )[ﬁcﬁ (fo(x+6),y)], (3)

z,y~D d~py(d

where again « + § € [0, 1] and ||||2 = e. For a joint adversarial training, we alternate between an
outer loop of classifier update steps and an inner loop of generator update steps. This is also depicted
schematically in Fig. 1B. Note that in regular adversarial training, e.g. (Madry et al., 2018), § is
optimized directly whereas we optimize a constrained distribution over 4.

Combining Adversarial Noise Training with stylization As demonstrated by Geirhos et al.
(2019), using random stylization as data augmentation increases the accuracy on ImageNet-C. The
robustness gains are attributed to a stronger shape bias of the classifier. We combine our ANT and
the stylization approach to achieve robustness gains from both.

3 EXPERIMENTS

General setup All technical details, hyper-parameters and the architecture of the noise generator
can be found in Appendix B-C.

(In-)Effectiveness of regular adversarial training to increase robustness towards common cor-
ruptions We find that robustness against regular adversarial examples does not generalize to
robustness against common corruptions. Details on our experiments on adversarial robustness for
ImageNet and MNIST can be found in Appendix D.

Effectiveness of Gaussian data augmentation to increase robustness towards common corrup-
tions We fine-tune a pretrained image classifier with Gaussian data augmentation from the distri-
bution N(0, 0%1) and vary o. The Top-1 accuracy of the fine-tuned models on ImageNet-C and a
comparison to a vanilla trained model is shown in Fig. 2. Each black point shows the performance of
one model fine-tuned with one specific o; the vanilla trained model is marked by the point at o = 0.
The horizontal lines indicate that the model is fine-tuned with Gaussian noise where ¢ is sampled
from a set for each image. We show both the results on the full ImageNet-C evaluation set and the
results on ImageNet-C without Noises (namely Blur, Weather and Digital) since Gaussian noise is
part of the test set. To give a feeling of how the different o-levels manifest themselves in an image,
we include example images for all o-levels in Appendix E. The Figure demonstrates that Gaussian
noise generalizes well to the non-noise corruptions of the ImageNet-C evaluation dataset and is a
powerful baseline. This is a surprising result as it was shown in several recent works that training on
Gaussian or uniform noise does not generalize to other corruption types (Geirhos et al., 2018; Lopes
et al., 2019) or that the effect is very weak (Ford et al., 2019). The standard deviation ¢ is a crucial
hyper-parameter and has an optimal value of about o = 0.5 for ResNet50.

In the next section, we will compare Gaussian data augmentation to our Adversarial Noise Training
(see Appendix F for details on evaluating adversarial noise) and baselines from the literature. For this,
we will use the models with the overall best-performance: The model GN 5 that was trained with
Gaussian data augmentation with a single o = 0.5 and the model GNy,,;;x where o was sampled from
the set {0.08,0.12,0.18,0.26, 0.38}, which corresponds to the Gaussian corruption of ImageNet-C.

Comparison of different methods to increase robustness towards common corruptions We
now compare the robustness of differently trained models on the ImageNet-C benchmark. We
consider our two best models trained with Gaussian data augmentation (GNT) and a model trained via
Adversarial Noise Training (ANT). We also train a model with a combination of ANT and stylization
(ANT+SIN). Since Gaussian noise is part of ImageNet-C, we train another baseline model with
data augmentation using the Speckle noise corruption from the ImageNet-C holdout set. We later
denote the cases where the corruptions present during training are part of the test set by putting
corresponding accuracy values in brackets. Additionally, we compare our results with several baseline
models from the literature. A description and discussion of these can be found in Appendix G. The
Top-1 accuracies on the full ImageNet-C dataset and ImageNet-C without the Noise corruptions are
displayed in Table 1; detailed results on individual corruptions in terms of accuracy and mCE are



Published as a conference paper at ICLR 2020

ImageNet-C ImageNet-C w/o Noises
o — . 0.474 . .
0.481 . R ° .
[ ]
C‘E' 0.451 . 0.451 —k—f—h———— k%
(% ® single o
" 0.421 —*— ¢ € {0.08,0.12,0.18,0.26,0.38}
[ ]
. —*— ¢ €{0.08,0.12,0.18,0.26,0.38,0.5} 0.43 .
0.391® o € {0.08,0.12,0.18,0.26,0.38,0.5, 0.6} L] .
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Gaussian o Gaussian o

Figure 2. Top-1 accuracy on ImageNet-C (left) and ImageNet-C without the Noise corruptions (right)
of a ResNet50 fine-tuned with Gaussian data augmentation of varying . We train on Gaussian noise
sampled from a distribution with a single o (black dots) and on distributions where o is sampled from
different sets (green lines with stars). We also compare to a vanilla trained model at o = 0.

IN IN-C IN-C w/o Noises
model clean acc. Top-1 Top-5 Top-1 Top-5
Vanilla RN50 76.1 392 593 423 632
Shift Inv (Zhang, 2019) 77.0 414 61.8 442 65.1

Patch GN (Lopes et al., 2019) 76.0 (43.6) (n.a.) 437 n.a.
SIN+IN (Geirhos et al., 2019) 74.6 452 666 466 68.2
AugMix (Hendrycks et al., 2020) 77.5  (48.3) (69.2) (50.4) (71.8)

Speckle 758 464 67.6 445 655
GNT s 76.1  (49.2) (70.2) 452  66.2
GNToy 5 759  (49.4) (70.6) 47.1  68.3
ANT 76.0 (51.1) (722) 477  68.8
ANT+SIN 749  (522) (73.6) 492 1706

Table 1: Average accuracy on clean data, average Top-1 and Top-5 accuracies in percent on ImageNet-
C and ImageNet-C without the Noise categories (higher is better). Gray numbers in brackets indicate
scenarios where a corruption from the test set was used during training.

shown in Tables 8 and 9, Appendix H. We also calculate the accuracy on corruptions without the
Noise category as our approach is to either add Gaussian noise or produce uncorrelated adversarial
noise.

The results on full ImageNet-C are striking: a very simple baseline, namely a model trained with
Speckle noise data augmentation, beats almost all previous baselines reaching an accuracy of 46.4%
which is larger than the accuracy of SIN+IN (45.2%) and close to AugMix (48.3%). However,
AugMix uses augmentations that are not clearly independent from the test set corruptions. The
GNoy 5 surpasses SIN+IN not only on the Noise categories but also on almost all other corruptions,
see Table 1 and a more detailed breakdown in Table 8, Appendix H. The ANT+SIN model produces
the best results on ImageNet-C without Noises. Thus, it is slightly superior to Gaussian data
augmentation and pure ANT. The results on MNIST-C can be found in Appendix I.

4 DISCUSSION & CONCLUSION

So far, attempts to use simple noise augmentations for general robustness against common corruptions
have produced mixed results, ranging from no generalization from one noise to other noise types
(Geirhos et al., 2018) to only marginal robustness increases (Ford et al., 2019; Lopes et al., 2019). In
this work, we demonstrate that carefully tuned additive noise patterns in conjunction with training
on clean samples can surpass almost all current state-of-the-art defense methods against common
corruptions. Additionally, we show that training against simple uncorrelated worst-case noise patterns
outperforms our already strong baseline defense, with additional gains to be made in combination
with previous defense methods like stylization training (Geirhos et al., 2019).
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APPENDIX

A RELATED WORK

Robustness against common corruptions Several recent publications study the vulnerability of
DNNs to common corruptions. Dodge and Karam (2016) find that state-of-the-art image recognition
networks are particularly vulnerable to blur and Gaussian noise. Two recent studies compare humans
and DNNs on recognizing corrupted images, showing that DNN performance drops much faster than
human performance for increased perturbation sizes (Dodge and Karam, 2017a; Geirhos et al., 2018).
Yin et al. (2020) study the Fourier properties of common corruptions and link them to the robustness
of differently trained classifiers.

Hendrycks and Dietterich (2019) introduce corrupted versions of standard datasets denoted as
ImageNet-C, Tiny ImageNet-C and CIFAR10-C as standardized benchmarks for machine learning
models and show that while state-of-the-art networks like ResNet50 are more accurate than outdated
ones like AlexNet, their robustness is still negligible compared to humans. Similarly, common
corruptions have been applied to and evaluated on COCO-C, Pascal-C, Cityscapes-C (Michaelis et al.,
2019) and MNIST-C (Mu and Gilmer, 2019).

There have been attempts to increase robustness against common corruptions. Zhang (2019) integrate
an anti-aliasing module from the signal processing domain in the ResNet50 architecture to restore the
shift-equivariance which can get lost in deep CNNs. This results both in increased accuracy on clean
data and increased generalization to corrupted image samples. Concurrent work to ours demonstrates
that having more training data (Xie et al., 2019a; Mahajan et al., 2018) or using stronger backbones
(Xie et al., 2019a; Michaelis et al., 2019) can significantly improve model performance on common
corruptions.

A popular method to decrease overfitting and help the network generalize better to unseen data
is to augment the training dataset by applying a set of (randomized) manipulations to the images
(Mikotajczyk and Grochowski, 2018). Furthermore, augmentation methods have also been applied
to make the models more robust against image corruptions (Geirhos et al., 2019). Geirhos et al.
(2018) train ImageNet classifiers against a fixed set of corruptions but find no generalized robustness
against unseen corruptions. However, they considered vastly higher noise severities than us. A similar
observation is made by (Dodge and Karam, 2017b). In a follow-up study, Geirhos et al. (2019) show
that recognition models are biased towards texture and suggest this bias as one source of susceptibility
for corruptions. They demonstrate that an increased shape bias also leads to increased accuracy on
corrupted images. Hendrycks et al. (2020) is concurrent work to ours where the authors propose a
data augmentation strategy which relies on combining and mixing augmentation chains. They also
report strong robustness increases on ImageNet-C.

Augmentation with Gaussian noise has been used as a regularizer for smoothing the decision boundary
of the classifier and was shown to be a provable adversarial defense (Cohen et al., 2019). Conceptually,
Ford et al. (2019) is the closest study to our work, since they also apply Gaussian noise to images to
increase corruption robustness. They observe a low relative improvement in accuracy on corrupted
images whereas we were able to outperform all previous baselines on the commonly used ResNet50
architecture.! They use a different architecture (InceptionV3 versus our ResNet50) and train a new
model from scratch whereas we fine-tune a pretrained model. Another methodological difference
is that we split every batch evenly in clean data and data augmented by Gaussian noise whereas
they sample the standard deviation uniformly between 0 and one specific value and add noise to
each image. Lopes et al. (2019) restrict the Gaussian noise to small image patches which improves
accuracy but does not yield state-of-the-art performance on the ResNet50 architecture.

Link between adversarial robustness and common corruptions There is currently no agreement
on whether adversarial training increases robustness against common corruptions in the literature.
Hendrycks and Dietterich (2019) report a robustness increase on common corruptions due to ad-
versarial logit pairing on Tiny ImageNet-C. Ford et al. (2019) suggest a link between adversarial
robustness and robustness against common corruptions, claim that increasing one robustness type
should simultaneously increase the other, but report mixed results on MNIST and CIFAR10-C. Addi-

'To compare with Ford et al. (2019), we evaluate our approach for an InceptionV3 architecture, see our
results in Appendix J.
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tionally, they also observe large drops in accuracy for adversarially trained networks and networks
trained with Gaussian data augmentation compared to a vanilla classifier on certain corruptions.
They do not evaluate adversarially robust classifiers on ImageNet. Fawzi et al. (2016) show that
curvature constraints can both improve robustness against adversarial and random perturbations but
they only present results on vanilla networks. On the other hand, Engstrom et al. (2019) report that
increasing robustness against adversarial ¢, attacks does not increase robustness against translations
and rotations, but they do not present results on noise. Kang et al. (2019) study robustness transfer
between models trained against ¢1, {5, £, adversaries / elastic deformations and JPEG artifacts.
They observe that adversarial training increases robustness against elastic and JPEG corruptions on
a 100-class subset of ImageNet. This result contradicts our findings on full ImageNet as we see a
slight decline in accuracy on those two classes for the adversarially trained model from (Xie et al.,
2019b) and severe drops in accuracy on other corruptions. Jordan et al. (2019) show that adversarial
robustness does not transfer easily between attack classes.

Universal adversarial perturbations Universal adversarial perturbations (UAPs) (Moosavi-
Dezfooli et al., 2017) are perturbations which, if added to any image, fool a given recognition
model. This contrasts with regular adversarial perturbations, which need to be designed specifically
for every single image. Hayes and Danezis (2017) generate UAPs by training so-called universal
adversarial networks (UANs). They also train the classifier jointly with the UAN but manage to
only slightly increase robustness against UAPs. Other defenses against UAPs are similarly based on
adversarial training (Metzen, 2018; Shafahi et al., 2018; Mummadi et al., 2019; Pérolat et al., 2018).

UAPs are very different from our adversarial noise setting in that UAPs can learn perturbations with
global, image-wide features while our adversarial noise is identically distributed over pixels and thus
inherently local.

ImageNet-C The ImageNet-C benchmark? (Hendrycks and Dietterich, 2019) is a conglomerate
of 15 diverse corruption types that were applied to the validation set of ImageNet. The corruptions
are organized into four main categories: Noise, Blur, Weather, and Digital and have five levels of
severities to reflect the varying intensities of common corruptions. The MNIST-C benchmark is
created similarly to ImageNet-C (Mu and Gilmer, 2019) with a slightly different set of corruptions.
Our main evaluation metric for both benchmarks is the Top-1 accuracy on corrupted images for each
noise category averaged over the severities; we also report the Top-5 accuracy on ImageNet-C. Since
some works report the ‘mean Corruption Error’ (mCE) instead of accuracy, we also include results
on mCE in Appendix H.

2For the evaluation, we use the JPEG compressed images from github.com/hendrycks/robustness as is
advised by the authors to ensure reproducibility. We note that Ford et al. (2019) report a decrease in performance
when the compressed JPEG files are used as opposed to applying the corruptions directly in memory without
compression artifacts.


https://github.com/hendrycks/robustness
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B THE NOISE GENERATOR

Formal definition We model the samples from pg(d) as the output of the Noise Generator neural
network g4 : RN — RY which gets its input from a normal distribution § = go(z) where z ~
N(0,1). We enforce the independence property of py(8) = [[,, ps(d,) by constraining the network
architecture of the noise generator g4 to only consist of convolutions with 1x1 kernels. Lastly, the
projection onto a sphere ||d||2 = € is achieved by scaling the generator output with a scalar while
clipping = + & to the valid range [0, 1] This fixed size projection (hyper-parameter) is motivated
by the fact that Gaussian noise training with a single, fixed o achieved the highest accuracy.

Architecture The architecture of the noise generator is displayed in Table 2. The noise generator
9o has four 1x1 convolutional layers with ReLU activations and one residual connection from input
to output. The convolutional weights are initialized such that the noise generator outputs a Gaussian
distribution. The number of color channels is indicated by C'. The noise generator only uses kernels
with a size of 1 and thus produces spatially uncorrelated noise. With the stride being 1 and no padding,
the spatial dimensions are preserved in each layer.

Layer Shape

Conv2D+ReLU 20 x 1 x1
Conv2D+ReLU 20x1x1
Conv2D +ReLU 20x1x1
Conv2D C x1x1

Table 2: Architecture of the noise generator.

10
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C IMPLEMENTATION DETAILS AND HYPER-PARAMETERS

We use PyTorch (Paszke et al., 2017) for all of our experiments.

Preprocessing MNIST images are preprocessed such that their pixel values lie in the range [0, 1].
Preprocessing for ImageNet is performed in the standard way for PyTorch ImageNet models from
the model zoo by subtracting the mean [0.485, 0.456, 0.406] and dividing by the standard deviation
[0.229,0.224,0.225]. We add Gaussian, adversarial and Speckle noise before the preprocessing step,
so the noisy images are first clipped to the range [0, 1] of the raw images and then preprocessed before
being fed into the model.

C.1 IMAGENET EXPERIMENTS

We evaluate all proposed methods for ImageNet-C on the ResNet50 architecture for better compa-
rability to previous methods, e.g. (Geirhos et al., 2019; Lopes et al., 2019; Zhang, 2019). For all
ImageNet experiments, we used a pretrained ResNet50 architecture from https://pytorch.
org/docs/stable/torchvision/models.html. We fine-tuned the model with SGD-M
using an initial learning rate of 0.001, which corresponds to the last learning rate of the PyTorch
model training, and a momentum of 0.9. After convergence, we decayed the learning rate once by
a factor of 10 and continued the training. Decaying the learning rate was highly beneficial for the
model performance. We tried decaying the learning rate a second time, but this did not bring any
benefits in any of our experiments. We used a batch size of 70 for all our experiments. We have also
tried to use the batch sizes 50 and 100, but did not see major effects.

Gaussian noise We trained the models until convergence. The total number of training epochs
varied between 30 and 90 epochs.

Speckle noise We used the Speckle noise implementation from https://github.
com/hendrycks/robustness/blob/master/ImageNet-C/create_c/make_
imagenet_c.py, line 270. The model trained with Speckle noise converged faster than with
Gaussian data augmentation and therefore, we only trained the model for 10 epochs.

Adversarial Noise Training To maintain high classification accuracy on clean samples, we sample
every mini-batch so that they contain 50% clean data and perturb the rest. The current state of the
noise generator is used to perturb 30% of this data and the remaining 20% are augmented with
samples chosen randomly from previous distributions. For this, the noise generator states are saved at
regular intervals. The latter method is inspired by experience replay from reinforcement learning
(Mnih et al., 2015) and is used to keep the classifier from forgetting previous adversarial noise
patterns.

To prevent the noise generator from being stuck in a local minimum, we halt the Adversarial Noise
Training (ANT) at regular intervals and train a new noise generator from scratch. This noise generator
is trained against the current state of the classifier to find a current optimum. The new noise generator
replaces the former noise generator in the ANT. This technique has proven crucial to train a robust
classifier.

The adversarial noise generator was trained with the Adam optimizer with a learning rate of 0.0001.
We have replaced the noise generator every 0.33 epochs. We set the e-sphere to control the size of
the perturbation to 135.0 which on average corresponds to the ¢5-size of a perturbation caused by
additive Gaussian noise sampled from A/(0, 0.52 - 1). We have trained the classifier until convergence
for 80 epochs.

C.2 MNIST EXPERIMENTS

For the MNIST experiments, we used the same model architecture as Madry et al. (2017) for our
ANT and GNT for comparability. For ANT, our learning rate for the generator was between 104
and 1075, and equal to 103 for the classifier. We used a batch size of 300. As an optimizer, we used
SGD-M with a momentum of 0.9 for the classifier and Adam (Kingma and Ba, 2014) for the generator.
The splitting of batches in clean, noisy and history was equivalent to the ImageNet experiments. The
optimal € hyper-parameter was determined with a line search similar to the optimal o of the Gaussian
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noise; we found € = 10 to be optimal. The parameters for the Gaussian noise experiments were
equivalent. Both models were trained until convergence (around 500-600 epochs). GNT and ANT
were performed on a pretrained network.

D (IN-)EFFECTIVENESS OF REGULAR ADVERSARIAL TRAINING TO INCREASE ROBUSTNESS
TOWARDS COMMON CORRUPTIONS

We evaluate whether robustness against regular adversarial examples generalizes to robustness against
common corruptions. We display the Top-1 accuracy of vanilla and adversarially trained models in
Table 3. For all tested models, we find that regular ¢, adversarial training can strongly decrease
the robustness towards common corruptions, especially for the corruption types Fog and Contrast.
Universal adversarial training (Shafahi et al., 2018), on the other hand, leads to severe drops on
some corruptions but the overall accuracy on ImageNet-C is slightly increased relative to the vanilla
baseline model (AlexNet). Nonetheless, the absolute ImageNet-C accuracy of 22.2% is still very
low. These results disagree with two previous studies which reported that (1) adversarial logit
pairing® (ALP) increases robustness against common corruptions on Tiny ImageNet-C (Hendrycks
and Dietterich, 2019), and that (2) adversarial training can increase robustness on the CIFAR10-C
data set (Ford et al., 2019).

We evaluate adversarially trained models on MNIST-C and present the results and their discussion
in Appendix I. The results on MNIST-C show the same tendency as on ImageNet-C: adversarially
trained models have lower accuracy on MNIST-C and thus indicate that adversarial robustness does
not transfer to robustness against common corruptions. This corroborates the results of (Ford et al.,
2019) on MNIST who also found that an adversarially robust model had decreased robustness towards
a set of common corruptions.

model IN-C  IN-C w/o Noises
Vanilla RN50 39.2% 42.3%
Adv. Training (Shafahi et al., 2019) 29.1% 32.0%
Vanilla RN152 45.0% 47.9%
Adpv. Training (Xie et al., 2019b) 35.0% 35.9%
Vanilla AlexNet 21.1% 23.9%
Universal Adv. Training (Shafahi et al., 2018) 22.2% 23.1%

Table 3: Top-1 accuracy on ImageNet-C and ImageNet-C without the Noise categories (higher is
better). Regular adversarial training decreases robustness towards common corruptions; universal
adversarial training seems to slightly increase it.

Detailed results on the evaluation of robustness due to regular adversarial training We find
that standard adversarial training against minimal adversarial perturbations in general does not
increase robustness against common corruptions. While some early results on CIFAR-10 by Ford
et al. (2019) and Tiny ImageNet-C by Hendrycks and Dietterich (2019) suggest that standard
adversarial training might increase robustness to common corruptions, we here observe the opposite:
Adversarially trained models have lower robustness against common corruptions. An adversarially
trained ResNet152 with an additional denoising layer* from Xie et al. (2019b) has lower accuracy
across almost all corruptions except Snow and Pixelations. On some corruptions, the accuracy of
the adversarially trained model decreases drastically, e.g. from 49.1% to 4.6% on Fog or 42.8% to
9.3% on Contrast. Similarly, the adversarially trained ResNet50° from [Shafahi et al., 2019] shows a
substantial decrease in performance on common corruptions compared with a vanilla trained model.

An evaluation of a robustified version of AlexNet® (Shafahi et al., 2018) that was trained with the
Universal Adversarial Training scheme on ImageNet-C shows that achieving robustness against uni-
versal adversarial perturbations does not noticeably increase robustness towards common corruptions
(22.2%) compared with a vanilla trained model (21.1%).

3Note that ALP was later found to not increase adversarial robustness (Engstrom et al., 2018).
“Model weights from https://github.com/facebookresearch/ImageNet-Adversarial-Training
>Model weights were kindly provided by the authors.
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Noise (Compressed) Blur (Compressed)
Model All | Gaussian Shot Impulse | Defocus Glass Motion Zoom
Vanilla RN50 39.2 29.3 27.0 23.8 38.7 26.8 38.7 36.2
AT (Shafahi et al., 2019) 29.1 20.5 19.1 12.4 214 30.8 30.4 314
Vanilla RN152 45.0 35.7 343 29.6 45.1 32.8 48.4 40.5
AT (Xie et al., 2019b) 35.0 352 344 24.8 22.1 31.7 30.9 32.0
Vanilla AlexNet 21.1 11.4 10.6 7.7 18.0 17.4 214 20.2
UAT (Shafahi et al., 2018) | 22.2 20.1 19.1 16.2 13.1 21.6 19.7 19.2
Weather (Compressed) Digital (Compressed)

Model Snow Frost Fog Brightness | Contrast Elastic Pixelate JPEG
Vanilla RN50 325 381 458 68.0 39.1 452 44.8 534
AT (Shafahi et al., 2019) 244 256 5.8 51.1 7.8 45.4 534 56.3
Vanilla RN152 387 439 491 71.2 42.8 51.1 50.5 60.5
AT (Xie et al., 2019b) 420 404 4.6 58.8 9.3 47.2 54.1 58.0
Vanilla AlexNet 133 173 18.1 43.5 14.7 354 28.2 394
UAT (Shafahi et al., 2018) | 13.8 183 43 36.5 4.8 36.8 423 47.1

Table 4: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent.
A high accuracy on a certain corruption type indicates high robustness of a classifier on this corruption
type, so higher accuracy is better. Adversarial training (AT) decreases the accuracy on common
corruptions, especially on the corruptions Fog and Contrast. Universal Adversarial Training (UAT)
slightly increases the overall performance.

Generalization of robustness towards common corruptions to adversarial robustness As reg-
ular adversarial training can decrease the accuracy on common corruptions, it is also interesting
to check what happens vice-versa: How does a model which is robust on common corruptions
behave under adversarial attacks? Both our ANT and GNT models have slightly increased /> and £,
robustness scores compared to a vanilla trained model, see Table 5. We tested this using the white-box
attacks PGD (Madry et al., 2017) and DDN (Rony et al., 2019). Note that, of course, adversarially
trained models still have significantly higher ¢5 and /., robustness.

model clean acc. [%] ¥5 acc.[%] {o acc.[%]
Vanilla RN50 75.2 41.1 18.1
GNToq 5 75.3 49.0 28.1
ANT 75.7 50.1 28.6

Table 5: Adversarial robustness on /5 (¢ = 0.12) and ¢, (¢ = 0.001) compared to a Vanilla ResNet50.

Details for the evaluation of adversarial robustness

ImageNet To evaluate adversarial robustness on ImageNet, we used PGD (Madry et al., 2017) and
DDN (Rony et al., 2019). For the ¢, PGD attack, we allowed for 200 iterations with a step size
of 0.0001 and a maximum sphere size of 0.001. For the DDN /5 attack, we also allowed for 200
iterations, set the sphere adjustment parameter  to 0.02 and the maximum epsilon to 0.125. We note
that for both attacks increasing the number of iterations from 100 to 200 did not make a significant
difference in robustness of our tested models. The results on adversarial robustness on ImageNet can
be found in the main paper in Table 5.

MNIST To evaluate adversarial robustness on MNIST, we also used PGD (Madry et al., 2017) and
DDN (Rony et al., 2019). For the /., PGD attack, we allowed for 100 iterations with a step size of
0.01 and a maximum sphere size of 0.1. For the DDN /5 attack, we also allowed for 100 iterations,
set the sphere adjustment parameter -y to 0.05 and the maximum epsilon to 1.5. All models have the
same architecture as Madry et al. (2017). The results on adversarial robustness on MNIST can be
found in Table 6.
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model clean acc. [%] /5 acc.[%] /Ao acc. [%]
Vanilla 99.1 73.2 55.8
GNToy 5 99.3 89.2 73.6
ANT 99.4 90.4 76.3

Table 6: Adversarial robustness on MNIST on /5 (e = 1.5) and ¢, (¢ = 0.1) compared to a Vanilla
CNN.

0=012

Figure 3. Example images with different o-levels of additive Gaussian noise on ImageNet.

E EXAMPLE IMAGES FOR ADDITIVE GAUSSIAN NOISE

Example images with additive Gaussian noise of varying standard deviation ¢ are displayed in Fig. 3.
The considered o-levels correspond to those studied in section 3 in the main paper.
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F EVALUATION OF THE SEVERITY OF ADVERSARIAL NOISE AS AN ATTACK

In this section, we try to answer the question: Can we learn the most severe uncorrelated additive
noise distribution for a classifier? Following the success of simple uncorrelated Gaussian noise data
augmentation (section 3) and the ineffectiveness of regular adversarial training (Appendix D) which
allows for highly correlated patterns, we restrict our learned noise distribution to be sampled indepen-
dently for each pixel. We denote this learned adversarial noise distribution p4(d) as adversarial noise
(AN, section 2).

Evaluation of noise robustness We evaluate the robustness of a model by sampling a Gaussian
noise vector §. We then do a line search along the direction 4 starting from the original image « until
it is misclassified. We denote the resulting minimal perturbation as d,,;,. The robustness of a model
is then denoted by the median® over the test set

€* = median ||8min|2, S
x,y~D

with fg(2 + Omin) # y and = + dmin € [0, 1]7V. Note that a higher €* denotes a more robust classifier.
To test the robustness against adversarial noise, we train a new noise generator at the end of the
Adversarial Noise Training until convergence and evaluate it according to Eq. (4).

To measure the effectiveness of our adversarial noise, we report the median perturbation size €* that is
necessary for a misclassification for each image in the test set. In Table 7, we see that our AN is much
more effective at fooling the classifier compared to Gaussian and uniform noise. This is also reflected
qualitatively in the noisy images in Fig. 1 where we show images at the decision boundary: The
amount of noise to fool the classifier is smaller in the right-most image produced by the generative
network than in the central images (Gaussian and uniform noise).

model €GN CUN  EAN
Vanilla RN50 39.0 39.1 16.2

Table 7: Median ¢y perturbation size €* that is required to misclassify an image for Gaussian (GN),
uniform (UN) and adversarial noise (AN). A lower €* indicates a more severe noise, since on average,
a smaller perturbation size is sufficient to fool a classifier.

G BASELINES FOR IMAGENET-C

The ImageNet-C benchmark has been published recently and we use all baselines we could find for a
ResNet50 architecture:

1. Shift Inv: The model is modified to enhance shift-equivariance using anti-aliasing (Zhang,
2019).7

2. Patch GN: The model was trained on Gaussian patches (Lopes et al., 2019). Since no model
weights are released, we can only include their Top-1 ImageNet-C accuracy values from
their paper (and not the Top-5).

3. SIN+IN: The model was trained on a stylized version of ImageNet (Geirhos et al., 2019).

4. AugMax: Hendrycks et al. (2020) trained their model using diverse augmentations.” They
use image augmentations from AutoAugment (Cubuk et al., 2018) and exclude the contrast,
color, brightness, sharpness, and Cutout operations to make sure that the test set of ImageNet-
C is disjoint from the training set. However, they use the Posterize operation which, as
we argue, is visually similar to the JPEG corruption in ImageNet-C (see Appendix K).
Additionally, it should be noted that JPEG compression is also used in conjunction with
every image in ImageNet-C. As shown by Ford et al. (2019), evaluating on a non-compressed

8Samples for which no £-distance allows us to manipulate the classifier’s decision contribute a value of oo
to the median.

"Weights were taken from github.com/adobe/antialiased-cnns.

8Weights were taken from github.com/rgeirhos/texture-vs-shape.

“Weights were taken from github.com/google-research/augmix.
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version of ImageNet-C affects model performance. Therefore, we argue that the training
dataset as used in AugMix is not fully disjoint from the test set of ImageNet-C. Following
the line of argumentation above, we put their accuracy values in brackets.

H DETAILED IMAGENET-C RESULTS

We show detailed results on individual corruptions in Table 8 in accuracy and in Table 9 in mCE
for differently trained models. In Fig. 4, we show the degradation of accuracy for different severity
levels. To avoid clutter, we only show results for a vanilla trained model, for the previous state of the
art SIN+IN (Geirhos et al., 2019), for several Gaussian trained models and for the overall best model
ANT+SIN.

The Corruption Error (Hendrycks and Dietterich, 2019) is defined as
5 5
rt - (yet) /(S emee). ®
s=1 s=1

where E{ . 1s the Top-1 error of a classifier f for a corruption ¢ with severity s. The mean Corruption
error (mCE) is taken by averaging over all corruptions.

Noise Blur \ Weather Digital
model mean|Gauss Shot Impulse|Defocus Glass Motion Zoom|Snow Frost Fog Bright/Contrast Elastic Pixel Jpeg

Vanilla RN50 39 | 29 27 24 39 27 39 36 | 33 38 46 68 39 45 45 53
Shift Inv 42 | 36 34 30 40 29 38 39 | 33 40 48 68 42 45 49 57
Patch GN 44 | 45 43 42 38 26 39 38 |30 39 54 67 39 52 47 56

SIN+IN 45 | 41 40 37 43 32 45 36 | 41 42 47 67 43 50 56 58
AugMix 48 | 41 41 38 438 35 54 49 | 40 44 47 69 51 52 57 60
Speckle 46 | 55 58 49 43 32 40 36 | 34 41 46 68 41 47 49 58

GNTmult 49 | 67 65 64 43 33 41 37 | 34 42 45 68 41 48 50 60
GNToo.5 49 | 58 59 57 47 38 43 42 | 35 44 44 68 39 50 55 62

ANT 51| 65 66 64 47 37 43 40 | 36 46 44 70 43 49 55 62
ANT+SIN 52| 64 65 63 46 38 46 39 | 42 47 49 69 47 50 57 60

Table 8: Average Top-1 accuracy over 5 severities of common corruptions on ImageNet-C in percent
obtained by different models; higher is better.

Noise Blur Weather Digital

model mCE|Gauss Shot Impulse|Defocus Glass Motion Zoom|Snow Frost Fog Bright|Contrast Elastic Pixel Jpeg
Vanilla 771 80 82 83 75 8 78 80 | 78 75 66 57 71 8 77 77
SIN 69 | 66 67 68 70 82 69 80 | 68 71 65 58 66 78 62 70
PatchGN 71 | 62 63 62 75 % 78 78 | 81 74 57 59 71 74 74 72
ShiftInv. 73 | 73 74 76 74 8 78 77 |77 T2 63 56 68 86 71 71
AugMix 65| 67 66 68 64 79 59 64 | 69 68 65 54 57 74 60 65

Speckle 68 | 51 47 55 70 & 77 80 | 76 711 66 57 70 82 71 69
GNTpue 65| 37 39 39 69 81 76 79 | 76 70 67 56 69 81 69 66
GNToos 64 | 46 46 47 65 75 72 74 |75 68 69 57 71 78 63 63

ANT 621 39 38 39 65 77 72 75 | 74 66 68 53 67 78 62 62
ANT+SIN 61 | 40 39 40 65 76 69 76 | 67 64 62 55 63 77 59 66

Table 9: Average mean Corruption Error (mCE) obtained by different models on common corruptions
from ImageNet-C; lower is better.
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Figure 4. Top-1 accuracy for each corruption type and severity on ImageNet-C.
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Figure 5. Average accuracy on MNIST-C over all severties and corruptions for different values
of sigma o of the Gaussian noise training (GNT) during training. Each point corresponds to one
converged training.

I MNIST-C RESULTS

Similar to the ImageNet-C experiments, we are interested how vanilla, adversarially and noise trained
models perform on MNIST-C.

The adversarially robust MNIST model by Wong et al. (2018) was trained with a robust loss function
and is among the state of the art in certified adversarial robustness. The other baseline models
were trained with Adversarial Training in /5 (DDN) by Rony et al. (2019) and ¢, (PGD) by Madry
et al. (2017). Our GNT and ANT trained versions are trained as described in the main paper and
Appendix C. The results are shown in Table 10. Similar to ImageNet-C, the models trained with GNT
and ANT are significantly better than our vanilla trained baseline. Also, regular adversarial training
has severe drops and does not lead to significant robustness improvements. We achieve similar results
with both approaches and report a new state-of-the-art accuracy on MNIST-C: 92.4%.

As for ImageNet and GNT, we have treated o as a hyper-parameter. The accuracy on MNIST-C for
different values of o is displayed in Fig. 5 and has a maximum around o = 0.5 like for ImageNet.
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model & @e’% & \6& F X & Q_O‘ Q’O% NN Qoqo %Q} Qe‘ A ¢
Vanilla 99.1 869 |98 96 96 94 98 95 92 88 57 88 50 97 96 86 72
(Madry et al., 2017) 98.5 756|198 55 94 94 97 88 92 27 53 40 63 96 78 T4 84
Vanilla 98.8 743198 91 96 88 95 80 89 34 45 41 23 96 96 80 63
(Wong et al., 2018) 982 68697 65 93 93 94 87 89 11 40 20 25 96 89 61 68
Vanilla 995 898198 96 95 97 98 96 94 95 61 89 79 98 98 90 63
DDN Tr (Rony et al., 2019) 99.0 87.0 |99 97 96 94 98 91 93 72 55 92 64 99 98 91 66
Vanilla 99.1 869 |98 96 96 94 98 95 92 88 57 88 50 97 96 86 72
GNTog 5 993 924199 99 98 97 98 95 93 98 56 91 91 99 99 96 78
ANT 994 924199 99 98 97 98 95 93 98 55 89 91 99 99 96 80

Table 10: Accuracy in percent for the MNIST-C dataset for adversarially robust ((Wong et al., 2018),
(Madry et al., 2017), DDN (Rony et al., 2019)) and our noise trained models (GNT and ANT). Vanilla
always denotes the same network architecture as its adversarially or noise trained counterpart but
with standard training. Note that we used the same network architecture as Madry et al. (2017).
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J  COMPARISON TO FORD ET AL.

Ford et al. trained an InceptionV3 model from scratch both on clean data from the ImageNet dataset
and on data augmented with Gaussian noise (Ford et al., 2019). Since we use a very similar approach,
we compare our approach to theirs directly. The results for comparison on ImageNet both for the
vanilla and the Gaussian noise trained model can be found in Table 11. Since we use a pretrained
model provided by PyTorch and fine-tune it instead of training a new one, the performance of our
vanilla trained model differs from the performance of their vanilla trained model, both on clean data
and on ImageNet-C. The accuracy on clean data is displayed in Table 12. Another difference between
our training and theirs is that we split every batch evenly in clean and data augmented by Gaussian
noise with one standard deviation whereas they sample ¢ uniformly between 0 and one specific value.
With our training scheme, we were able to outperform their model significantly on all corruptions
except for Elastic, Fog and Brightness.

Noise (Compressed) Blur (Compressed)
model All | Gaussian Shot Impulse | Defocus Glass Motion Zoom
Vanilla InceptionV3 (Ford et al., 2019) | 38.8 | 36.6 343 347 31.1 19.3 353 30.1
Gaussian (0 = 0.4) (Ford et al., 2019) [42.7| 40.3 38.8 377 32.9 29.8 353 331
Vanilla InceptionV3 [ours] 41.6| 420 403 385 33.5 27.1  36.1 28.8
GNToyo.4 [ours] 495 60.8 59.6 594 438 370 428 384
GNToy.5 [ours] 50.2| 61.6 60.9 60.8 44.6 373 440 393
Weather (Compressed) Digital (Compressed)

model Snow Frost Fog Brightness | Contrast Elastic Pixelate JPEG
Vanilla InceptionV3 (Ford et al., 2019) | 33.1 34.0 52.4 66.0 35.9 47.8 38.2 500
Gaussian (o0 = 0.4) (Ford et al., 2019) | 36.6 43.5 52.3 67.1 35.8 52.2 470 555
Vanilla InceptionV3 [ours] 335 39.6 422 64.2 41.0 43.5 574 569
GNToyg.4 [ours] 35,6 4377 433 64.8 43.0 49.0 593 61.7
GNToyo.5 [ours] 371 442 436 64.6 43.3 494 59.6 619

Table 11: ImageNet-C accuracy for InceptionV3.

model clean accuracy [%]
Vanilla InceptionV3 (Ford et al., 2019) 75.9
Gaussian (o = 0.4) (Ford et al., 2019) 74.2
Vanilla InceptionV3 [ours] 77.2
GNToy 4 [ours] 78.1
GNToyg 5 [ours] 77.9

Table 12: Accuracy on clean data for differently trained models.

20



Published as a conference paper at ICLR 2020

Posterize

Figure 6. Example images for the JPEG compression from ImageNet-C and the
PIL.ImageOps.Posterize operation.

K VISUALIZATION OF POSTERIZE VS JPEG

AugMix (Hendrycks et al., 2020) uses Posterize as one of their operations for data augmentation
during training. We argue that Posterize is too similar to the JPEG corruption in ImageNet-C and
therefore, the training set is not disjoint from the test set. To visualize our point, we show example
images for the JPEG compression in ImageNet-C and PIL. ImageOps.Posterize operation in
Fig. 6.
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